Finding Data

Unsupervised Learning, Large-scale Machine Learning, Reinforement Learning, Final Review

Dana Golden, Lilia Maliar

Data Science and Machine Learning - November 30, 2024

Final Review

Finding Data

Presentation Outline

- 1 Introduction and Background
- **2** Unsupervised Learning
- **3** Large-scale ML
- 4 RL
- 5 Final Review
- 6 Finding Data

RL 0000000000000

Final Review

Finding Data

Review of Classification

Figure 1: Classification Machine Learning

Unsupervised Learning

- No labels
- Finds patterns and creates groups in the underlying structure of the data
- Useful for anomaly detection or creating groups where previously missing, market segmentation

Figure 2: Clustering

(L)00000000000000

Final Review

Finding Data

Large-scale Machine Learning

- Real-world machine learning is highly dependent on massive amounts of data
- This means cloud computing, databases, efficient algorithms, and GPUs

L 000000000000000000 Final Review

Finding Data

Large-scale Machine Learning

- Real-world machine learning is highly dependent on massive amounts of data
- This means cloud computing, databases, efficient algorithms, and GPUs
- Companies don't want you to analyze data anymore, they want you to build things that interact with users and exist in the real world

Reinforcement Learning

- Reinforcement learning shows remarkable promise for synergy with economics in the future
- Reinforcement learning is the topic in machine learning most likely to have a major impact on the economics profession
- Multi-agent reinforcement learning is actually highly similar to game theory

Final Review

Finding Data

K-means Overview

- An unsupervised learning algorithm for dividing highly dimmensional datapoints into clusters
- Computationally intensive but easy due to heuristic algorithms
- Great starting place to find patterns in data

Introduction and Background

Unsupervised Learning

Large-scale ML

Final Review

Finding Data

K-means Visualized

Figure 3: K-means visualized

KL 20000000000000

Final Review

Finding Data

K-means Objective Function

- Given a set of n d-dimensional observations (x₁, x₂, ...x_n), K-means clustering partitions them into *l* ≤ *n* sets *S* = {*S*₁, *S*₂...*S*_k}
- K-means minimizes within-cluster sum of squares/ variance

$$\arg\min_{S} \sum_{i=1}^{k} \sum_{x \in S_{i}} ||x - \mu_{i}||^{2} = \arg\min_{S} \sum_{i=1}^{k} |S_{i}| Var(S_{i})$$
(1)

RL 00000000000000000

(3)

K-means Algorithm

- Random initialization: A set of random points chosen for initialization
- Assignment step: Each point is assigned to cluster with closest center

$$S_{i}^{(t)} = \{x_{p} : ||x_{p} - m_{i}^{(t)}||^{2} \le ||x_{p} - m_{j}^{(t)}||^{2} \forall j, 1 \le j \le k\}$$
(2)

- Center of cluster reset to mean of cluster $m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_i \in S_i^{(t)}} x_j$
- Termination: Algorithm terminates when within cluster sum of squares stops decreasing or assignments no longer change
- Different results every time, always converges but not necessarily to global optimum
- How do we know it always converges?

K-medoids Algorithm

- Greedily select k of N datapoints to minimize cost
- Associate datapoints to closest medoid by any distance metric
- Consider every non-mediod point in the medoid and pick the new centers based on ones that minimize costs
- Reassign points
- Continue to do this until termination
- If cost stops decreasing, terminate

K-medoids Algorithm

- Greedily select k of N datapoints to minimize cost
- Associate datapoints to closest medoid by any distance metric
- Consider every non-mediod point in the medoid and pick the new centers based on ones that minimize costs
- Reassign points
- Continue to do this until termination
- If cost stops decreasing, terminate
- Minimizes pairwise distances rather than variance, so more robust to outliers

Introduction and Background	Unsupervised Learning 00000●	Large-scale ML	RL 0000000000000	Final Review ○	Finding Data

Elbow Curve

• Choose number of clusters based on inflection point of Elbow curve

Cloud Computing

- Cloud computing resources pool the power of many individual computing resources simultaneously
- Cloud computing runs many algorithms in parallel on large amounts of data
- Useful for creating large models that are put into operation

Introduction	and	Background

Unsupervised Learning

Large-scale ML ○●○

Final Review

Finding Data

Seawulf

- Seawulf is SBU's research cloud computing system
- Seawulf allows many machines to be used to run tasks in parallel
- Valuable way to train large models

Final Review

Finding Data

Graphical Processing Units

- Graphical processing units (GPUs) speed up training of neural networks
- GPUs are very good at performing certain tasks repetitively and train networks much faster

Graphical Processing Units

- Graphical processing units (GPUs) speed up training of neural networks
- GPUs are very good at performing certain tasks repetitively and train networks much faster
- The best neural networks are trained on servers of GPUs
- You can access GPU's through Google Colab

RL •000000000000

Reinforcement Learning Overview

- Reinforcement learning learns from the environment using punishments and rewards
- An agent observes the state, takes an action, moves to the next state, and observes a reward

Reinforcement Learning Overview

- Reinforcement learning learns from the environment using punishments and rewards
- An agent observes the state, takes an action, moves to the next state, and observes a reward
- Very similar to many economic setups
- The current forefront of machine learning, very similar to human learning
- Very useful for learning complex environments

Introduction and Background

Unsupervised Learning

Large-scale ML

Final Review

Finding Data

Example Problem

Figure 5: Grid World Example

Markov Decision Process

- A Markov Decision Process consists of a 4-tuple (S, A, Pa, Ra)
- S is the state space
- A is the action space $P_a(s, s')$ is the conditional probability that action a in state s at time t will lead to state s' at time t + 1, generally assumed to have Markov property
- R_a(s, s') is the reward received from transitioning from state s to s' due to action a

Introduction and Background	Unsupervised Learning	Large-scale ML	RL 000000000000000000000000000000000000	Final Review

MDP Visualized

Э

Dynamic Programming

- Value iteration is common in both dynamic economics and reinforcement learning
- Value iteration is a model-based method to find the value of being in a particular state

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

Figure 7: Value Iteration

Introduction and Background Unsupervised Learning Large-scale ML OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
--

Q-learning

• New Q-value is equal to the former Q-value plus the learning rate times the reward plus the discounted maximum Q value of the next state

$$Q(s,a)' = Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$
(4)

Q-learning

• New Q-value is equal to the former Q-value plus the learning rate times the reward plus the discounted maximum Q value of the next state

$$Q(s,a)' = Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$
(4)

• How do you learn new states?

RL 00000000000000 Final Review

Finding Data

Multi-armed Bandits

- Scenario: Pull machine k → sample from *unknown* reward distribution D_k → observe reward.
- Problem: Given a finite number of pulls T, how can I optimize my winnings?
- How much should I explore? How much should I exploit?

Figure 8: Multi-armed Bandits

RL 0000000000000000

Final Review

Finding Data

Exploration Exploitation Tradeoff

Figure 9: Caption

< E.

< E

Unsupervised Learn

Large-scale ML

 Final Review

Finding Data

Q-table

0.7	Actions						
4-1	obte						
		0	0	0	0	0	0
		1.1					
States		0	0	0	0	0	0
		1.1					
		0	0	0	0	0	0

Initialized

O Toble								
Q-1a	ibte	South (0)						
		0	0	0	0	0	0	
		1.1						
			•	•				
		-2.30108105	-1.97092096	-2.30357004	-2.20591839	-10.3607344	-8.5583017	
		1.1.1						
		9.96984239	4.02706992	12.96022777	29	3.32877873	3.38230603	

Figure 10: Q-table Visualized

E

E

Final Review

Finding Data

Gridworld with Q-values

0.51)	0.72)	0.84 ♪	1.00	
0.27		0 .55	-1.00	
0.00	0.22)	0.37	◀ 0.13	
VALUES AFTER 5 ITERATIONS				

Figure 11: Grid World after iterations

Deep Q-learning

- Deep Q-learning is the forefront of reinforcement learning
- Deep Q-learning combines neural networks with Q-learning to more efficiently map the Q-function
- Allows for significantly more dimensional state spaces

Figure 12: Deep Q-learning

RL 000000000000

Final Review Fi

Finding Data

Reinforcement Learning and Economics

- Game theory: Algorithmic decision making
- IO: Algorithmic pricing
- Macro: Dynamic optimization, HANK models

Introduction	and	Background

Final Review

Finding Data

Final Review

• What questions do you have?

1**L**

Final Review

Finding Data

Open-source Data

- FRED
- ERS
- EIA
- NASS
- Census
- OECD
- IEA
- World Bank
- BEA
- BLS
- IRS: Statistics of Income

Introduction	and	Background

Unsupervised Lear

Large-scale N

RL

Final Review

Finding Data

IPUMS

Introduction	and	Background	

Unsupervised Learn

Large-scale ML

L

Final Review

Finding Data

WRDS

- Compustat
- IRI
- CRSP

æ

Introduction and Background

Onsupervised Lear

Large-scale ML

RL

Final Review

Finding Data

Common Surveys

- NLSY
- CEX
- SCF
- PSID

æ

Thank You So Much!